

Ver. HB221111

Hieff NGS™ MaxUp Human rRNA Depletion Kit (rRNA & ITS/ETS)

Product description

Hieff NGS™ MaxUp Human rRNA Depletion Kit (rRNA & ITS/ETS) is designed to remove rRNA and 45S ITS/ETS from human, mouse and rat total RNA based on RNase H-based workflow and to retain mRNA and other non-coding RNA. This kit is suitable for both intact and partially degraded RNA samples (e.g., FFPE RNA). Since degraded FFPE samples usually contain a higher proportion of ITS/ETS than fresh tissue samples, this kit adds probes in the Human 45S ITS/ETS region, and ITS removal can significantly increase the proportion of valid data in raw data.

Components

Components No.	Name	12257ES24 (24T)	12257ES96 (96T)
12257-A	Hybridization Buffer	72 μL	288 μL
12257-B	Probe Mix (rRNA & ITS/ETS)	48 μL	192 μL
12257-C	RNase H Buffer	72 μL	288 μL
12257-D	RNase H	48 μL	192 μL
12257-E	O DNase I Buffer	660 μL	2×1320 μL
12257-F	O DNase I	60 μL	240 μL

Specifications

Depletion Technology	RNase H
Sample Type	Total RNA of human,mouse and rat
Final Product Type	mRNA and other non coding RNAs
No. of Reactions	24 /96 Preps
Starting Material Amount	100 ng~1 μg total RNA
Target	Remove rRNA and 45S ITS/ETS form human total RNA

Shipping and Storage

All the components are shipped with dry ice and can be stored at -15°C ~ -25°C for one year.

Instructions

Required Materials Not Included: (1) RNA clean beads: Hieff NGS™Cleaner (Cat#12602) or equivalent; (2) qRT-PCR inspection for rRNA removal efficiency detection: Hieff™ qPCR SYBR Green Master Mix (No Rox) (Cat#11201) or equivalent; (3) Other materials: Ethanol, ddH2O, Pipettes, PCR tubes, Magnetic stand, Thermocycler.

1. Probe Hybridization to RNA

- 1.1 Dilute 10 ng-1 μg of total RNA with Nuclease-free Water to a final volume of 11 μL in a PCR tube. Keep the RNA on ice.
- 1.2 Assemble the following RNA/Probe hybridization reaction on ice according to Table 1.

Table 1 RNA/Probe hybridization reaction

Components	Volume (μL)
Hybridization Buffer	3
Human Probe Mix (rRNA & ITS/ETS)	2
Total RNA	10 (100 ng~1 μg)
Total	15

- 1.3 Mix thoroughly by gently pipetting up and down at least 10 times. Briefly spin down the tube in a microcentrifuge to collect the liquid from the side of the tube.
- 1.4 Place tube in a thermocycler and run the following program with the heated lid set to 105°C.

Table 2 Reaction program of RNA/Probe hybridization

Temperature	Duration
Hot lid 105°C	On
95°C	2 min
95°C-22°C	0.1°C/s
22°C	5 min
4°C	hold

2. RNase H Digestion

2.1 Assemble the following RNase H digestion reaction on ice according to Table 3.

Table 3 RNase H digestion reaction

Components	Volume (μL)	
RNase H Buffer	3	
RNase H	2	
Hybridized RNA (Step 1.4)	15	
Total	20	

Note: Do not premix the RNase H Buffer and RNase H.

- 2.2 Mix thoroughly by gently pipetting up and down at least 10 times. Briefly spin down the tube in a microcentrifuge to collect the liquid from the side of the tube.
- 2.3 Place tube in a thermocycler and run the following program: lid 50°C; 37°C, 30 min; 4°C, hold.

3. DNase I Digestion

3.1 Assemble the following DNase I digestion reaction on ice according to Table 4.

Table 4 DNase I digestion reaction

Components	Volume (μL)
DNase I Buffer	27.5
DNase I	2.5
RNase H treated RNA (Step 2.3)	20
Total	50

3.2 Mix thoroughly by gently pipetting up and down at least 10 times. Briefly spin down the tube in a microcentrifuge to collect the liquid from the side of the tube.

3.3 Place tube in a thermocycler and run the following program: lid 50°C; 37°C, 30 min; 4°C, hold.

4. RNA Purification

- 4.1 Equilibrate the Hieff NGS™RNA Cleaner (Cat#12602) to room temperature and resuspend the beads thoroughly by vortexing before use.
- 4.2 Add 110 μL (2.2×) beads to the RNA solution from Step 3.3 and mix thoroughly by pipetting up and down at least 10 times.
- 4.3 Incubate at room temperature for 5 minutes to bind RNA to the beads.
- 4.4 Place the tube on a magnetic stand to separate the beads from the supernatant. When the solution is clear (about 3 mins), discard the supernatant. Be careful not to touch the beads with the pipette tips.
- 4.5 Keep the tube on the magnetic stand. Add 200 μL of freshly prepared 80% ethanol to the tube. Incubate at room temperature for 30 seconds and then discard the supernatant. Be careful not to touch the beads with the pipette tips.
- 4.6 Repeat Step 4.5 once for a total of two washes.
- 4.7 Remove residual ethanol with 10 μ L pipette tips. Keep the tube on the magnetic stand and air dry-the beads for up to 5 minutes with the lid open.
- 4.8 Remove the tube from the magnetic stand. Elute the RNA from the beads by adding 11 μ L of Nuclease-free Water. Mix thoroughly by pipetting up and down at least 10 times and briefly spin the tube.
- 4.9 Incubate for 5 minutes at room temperature. Place the tube on the magnetic stand until the solution is clear (~ 3 minutes).
- 4.10 Transfer 10 μ L of the supernatant to a nuclease-free tube.

Note: If you need to stop at this point, samples can be stored at -80° C.

Notes

- 1. Please use consumables that are free of RNase contamination and clean the experimental area regularly. It is recommended to use ThermoFisher's RNAZap™ high-efficiency nucleic acid removal spray to remove RNase contamination.
- 2. The RNA sample should be free from genomic DNA contamination. If gDNA remains in the sample, it should be digested by DNase I and purified before use.
- 3. The maximum input volume of RNA sample is 10 μL. If the sample volume is large, it can be concentrated first.
- 4. For your safety and health, please wear lab coats and disposable gloves for operation.
- 5. For research use only!